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The frequency domain simulation of electromagnetic resonators with finite methods (Finite Elements, Finite Integration) leads to 

large-scale eigenvalue formulations. Any kind of loss mechanism, such as conduction or radiation through open ports of the structure, 
necessarily corresponds to complex eigenvalues, where the ratio of the real and imaginary parts of the eigenvalues defines the (internal 
and/or external) Q-values of the modes. In the case of an external coupling to waveguides with dispersion characteristics the eigenvalue 
formulation becomes non-linear, i.e. the system matrix depends on the eigenfrequency to be computed. We use an integral solver for 
such non-linear eigenvalue problems and perform a study on some varying formulations. Some important properties are discussed 
such as the spectral properties, the influence of some approximations therein, as well as the efficiency of the overall solution process. 

Index Terms—Eigenvalues and Eigenfunctions, Finite Difference Methods, Numerical Simulation. 
 

I. INTRODUCTION 
HE calculation of eigenvalues in electromagnetic cavities 
is a standard task in many simulation tools, and a variety 

of efficient solvers are available. However, the algebraic 
situation becomes much more difficult if the cavities are 
externally coupled to waveguides with non-TEM modes, since 
the dispersion characteristics of such waveguide modes 
introduces an additional expression in the system matrix 
which depends on the frequency. Hence, the resulting 
formulation becomes non-linear w.r.t. the eigenvalue (the 
resonance frequency) and requires a careful choice of a 
suitable matrix formulation and solution process. We mainly 
use the notation of the finite integration technique (FIT) here, 
but most results are valid also for related approaches such as 
finite elements (FE). 

II. FORMULATIONS 

A. Finite Integration Technique (FIT) 
The degrees of freedom of FIT [1] are the so-called integral 

state variables: electric and magnetic voltages ,i je h


 . They are 

defined on the edges ,i iL L  of the primary grid G and the dual 

grid G , respectively: 
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Combining them to algebraic vectors, Maxwell’s grid equa-
tions in frequency domain can be written as (without currents) 

 , Tj jµ ε= − ω = ωCε M h C h M ε
 

  , (3) 

with the curl-operator C, and the linear material matrices 
Mε and Mµ. Eliminating the magnetic voltages, we obtain the 
standard eigenvalue equation 

 1 2( ) 0T −
µ ε− ω =C M C M ε . (5) 

B. Non-linear eigenvalue problem 
The first non-linear eigenvalue formulation for waveguide-

coupled cavity models is adapted from [2] (for finite elements, 
a similar formulation is reported in [3]). The following steps 
of an extended state-space formulation are required: 

- Define a coupling matrix B which contains columnwise 
the fields of the port modes, properly normalized at a 
reference frequency ω0i. This matrix can be used for 
both an excitation of the system by generalized currents 
at the ports, and the extraction of generalized voltages, 
see, e.g., [4]. 

- A proper relation between generalized currents and 
voltages (their ratio equals the line impedance) 
provides the requested situation where there are no 
incoming waves at all ports. This defines the system 
matrix for the eigenvalue problem. 

After some manipulations we obtain the following 
formulation which is non-linear in the eigenvalue ω : 

 ( )1 2( ) ( )T Tj−
µ εω = − ω + ω ω =T ε C M C M BP B ε 0  . (6) 

The expression ( ) TωBP B  models the radiation through 
external waveguides. Since the coupling matrix B refers to a 
normalization of the modes at reference frequencies ω0i, the 
diagonal scaling matrix P is required which contains 
normalization coefficients for the generalized impedances 
Z(ω0i) / Z(ω)  [2][4]. There is one column in B and one entry 
in P for each mode in one of the ports. For TE and TM modes 
the entries of P read 
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Note that this formulation is more or less identical to the FE 
formulation reported in [2], only the parts representing the 
stiffness and mass matrices have to be exchanged when finite 
elements are replaced by finite integration. 
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C. Alternative Formulations 
A simple way to avoid a non-linear eigenvalue solver is to 

linearize the formulation: The matrix in (6) is evaluated at 
some initial guess, T(ω(0)), allowing to apply a simple linear 
eigenvalue solver, augmented by some steps of a fixed-point 
iteration (with updates ω(k) of the evaluation frequency). 
Comparing the overall effort it should be noted that this 
procedure is valid only for a single eigensolution and may 
have to be repeated accordingly. Additionally, it may be hard 
to find an appropriate and sufficiently accurate starting value 
ω(0), and some existing eigenvalues may not be found at all. 
Nevertheless, this linearization approach can be used for 
validation purposes. 

 
An alternative formulation follows directly the commonly 

used time domain implementation for scattering parameter 
simulations. Instead of generalized voltages and currents, 
defined directly in the port planes, we extract the wave 
amplitudes along the coupled waveguide in two different 
slices of a Cartesian mesh from the field vector. Using the 
dispersion characteristics kz(ω) of each mode these amplitudes 
are used to realize an absorbing boundary condition for 
waveguide modes in frequency domain. Proposed in [5] for 
excited systems (including an extended right hand side 
vector), the resulting matrix can also be used for the 
eigenvalue problem, simply setting the amplitudes of all 
incoming waves to zero. Note that although the same radiating 
modes (complex eigenvalues) are supported, this formulation 
features a different non-linearity w.r.t. frequency, including an 
expression like exp(-j kz(ω) ∆z). 

 
Finally, the standard time domain solver itself can be used 

to produce complex eigenfrequencies for the “open” problem: 
The structure is excited by an artificial internal current source, 
which has to be appropriately located to excite the searched 
mode fields, and which should exhibit a suitable bandwidth. 
The resulting, decaying time signals (e.g., directly at the ports) 
can be used to extract resonance frequencies and Q values. 
This well-established approach can be performed using 
standard time domain solvers, e.g. in commercial tools, and an 
experienced user will probably find all desired eigensolutions. 
However, the simulation time for accurate results can be large 
for high-Q resonances (with long transients and settling 
times), and there is some extra effort to obtain also the 
eigenvectors (the fields) if required. Further on, there will be a 
small deviation to the frequency domain results due to the 
additional numerical dispersion effects in time domain. 

III. INTEGRAL SOLVER 
The outline of the integral solver [6] has been presented in 

[7] and will not be repeated here. The main idea is to calculate 
an approximation of a line integral along a closed contour in 
the complex ω-plane, where at each evaluation point a full-
size matrix has to be inverted. The overall numerical effort is 
very high and crucially depends on many implementation 
issues.  

IV. NUMERICAL RESULTS 
The numerical results show that all formulations are capable 

to find complex eigenvalues of a simple test structure 
(rectangular waveguide with dielectric inset, see [7]). The 
deviation of the computed eigenvalues to a semi-analytical 
reference solution is below any practical needs (and thus not 
evaluated here in detail), proving their validity.  

 

 
 

Fig. 1. Eigenvalues in the complex plane (blue), found by the integral solver 
within a contour around some midpoint (red). 

 
A major advantage of the integral solver is the fact that it 

guarantees to find the complete set of all eigenvalues (and 
corresponding fields) within a given contour (Fig. 1), however 
at comparatively high numerical cost. For the linearized fixed-
point iteration as well as for the time domain approach each 
mode has to be searched for separately, and both require some 
a-priori knowledge of these radiating modes. The magnitude 
of their Q values, as a measure of the deviation of the fields in 
the closed and the open structure, has some impact here. More 
details will be given in the presentation. 
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